Available online through
www.jbsoweb.com
ISSN 2321 - 6328

Research Article

A CASE STUDY OF FUSARIIUM EQUISETI PRODUCED VARIOUS TOXINS IN PLANT HOSTS
Suthar Ramchandra S. *,1, Bhatt P. N. 2 and Bhatt D. P. 3
1Assistant Professor, Department of Biotechnology, P. S. Science & H. D. Patel Arts College, kadi, India
2KSV University, Gandhinagar. Gujarat, India
3Sunagrigenetics P. Ltd, Vadodara, India
*Corresponding Author Email: ram_v2@yahoo.com

Article Received on: 05/02/18 Accepted on: 14/03/18

DOI: 10.7897/2321-6328.06175

ABSTRACT

Fusarium equiseti produced various mycotoxins and secondary metabolite in plant hosts. The present study showed that extracellular pigments and mycotoxins produced by Fusarium equiseti, when eluted on TLC and easily used for the identification of Fusarium spp., together with their micro- and macro morphological characters. Zearalenone, a well-known estrogen has been previously reported from F. equiseti, F. moniliforme and F. semitectum. Moniliformin has been reported from F. equiseti, F. oxysporum and F. semitectum. Equisetin, an antibiotic that inhibits growth of certain bacteria has been produced from F. equiseti. Likewise two more toxins were reported T-2 and HT-2 toxin from F. equiseti.

Keywords: Fusarium equiseti, mycotoxins, secondary metabolite, Zearalenone, Equisetin.

INTRODUCTION

A large number of microorganisms are known to produce toxic secondary metabolites. These metabolites are products of amino acids, cyclic peptides, aromatic, phenols, terpenoids and plant growth regulator1. Pathogenic strains of Fusarium oxysporum have been studied for more than 100 years. Fusarium toxins are produced by over 50 species of Fusarium and have a history of infecting the grain of developing cereals such as wheat and maize. They include a range of mycotoxins, such as: Fusaric acid2. Fusaric acid is mycotoxins with low to moderate toxicity, which is of concern since it might be synergistic with other co-occurring mycotoxins3. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium species are also isolated causing diseases4.

The toxicological interest in Fusarium species arises from their ability to produce a wide range of chemically different toxic compounds, such as fusaric acids, fumonisins, beauvericin, enniatin, moniliformin and trichothecenes, but probably fusaric acids are the most produced ones5. Seven classes of mycotoxins biosynthetic genes or gene clusters have been identified in Fusarium to date; four are polyketide synthase gene clusters for fusarins, fumonisins, fusarins, and zearalenones. Theses mycotoxins were described in Table-1 with chemical characterization and structure (Fig.-1).

<table>
<thead>
<tr>
<th>Mycotoxins</th>
<th>Chemical characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichothecenes</td>
<td>Fusarium trichothecenes are tricyclic sesquiterpenes that contain a double bond between carbons 9 (C-9) and 10 and a 12,13-epoxide ring, and are thus designated as 12,13-epoxytrichothec-9-ene.</td>
</tr>
<tr>
<td>Fumonisins</td>
<td>Fumonisins are long-chain amino polyalcohols. The major fumonisin homologue in cereal grains is fumonisin B1, a propane-1,2,3-tricarboxylic diester of 2-amino-12,16, dimethyl-3,5,10,14,15-pentahydroxyicosane</td>
</tr>
<tr>
<td>Zearalenones</td>
<td>Zearalenones are non-steroidal estrogenic mycotoxins are derived by cyclization to form a resorecylic acid lactone, and have a close structural relationship to antibiotic metabolites produced by a number of fungi8.10</td>
</tr>
<tr>
<td>Beauvercin and enniatins</td>
<td>Beauvercin and enniatins are members of a family of fungal N-methylated cyclic hexadepsipeptides.</td>
</tr>
<tr>
<td>Butenolide</td>
<td>Butenolide is a 4-acetamido-4-hydroxy-2-butenolic acid lactone that is produced by F. graminearum and a number of other trichothecene-producing Fusarium species</td>
</tr>
<tr>
<td>Equisetin</td>
<td>Equisetin is a derivative of N-methyl-2,4-pyrolidone (1-methyl-3-acyl-5-hydroxymethyl-2,4-dione) and is of particular interest due to its activity against the human immunodeficiency virus. Equisetin was reported as a metabolite of F. equiseti and F. semitectum.</td>
</tr>
<tr>
<td>Fusarins</td>
<td>Fusarins are 2-pyrolidones with a methylated, polysaturated side chain, but differ in the structure and substitution of the 2- pyrolidone moiety.</td>
</tr>
</tbody>
</table>
Most of these toxins were studied in terms of the human and animal health problems as well as for their metabolic effects on plants including phytotoxic activities like necrosis, chlorosis, wilting and inhibition of seed germination in addition to their herbicidal properties. The fungal metabolites which are directly or indirectly responsible for disease symptoms in higher plants are normally called phytotoxins. This term could include substances produced in pure culture, which may not necessarily be formed as a consequence of an interaction between the fungus and a higher plant.

DISCUSSION

Fusarium equiseti is reported to produce several phytotoxins like equisetin, fusicarb acid and alternari acid and their production is correlated to virulence of pathogenic strains. *Fusarium equiseti* is known to produce the several phytotoxic mycotoxins including T-2 toxin, Neosolaniol, Diacetoxyscirpenol, monoacetoxyscirpenol, Scirpenol, Zearalenone, Fusaric acid, Equisetin.

Fusarium equiseti is also known to produce an antibiotic “equisetin” *in vitro*. Equisetin is active against several strains of...
Gram-positive bacteria- *Mycobacterium phlei*, *Bacillus subtilis* and *Staphylococcus aureus* and the Gram-negative bacterium *Neisseria perflava*. Equisetin however, is ineffective against other Gram-negative and fungi\(^{32,24}\).

Fusarium oxysporum Schlecht. is the most destructive species of plants all over the world. It is capable of living almost indefinitely as mycelium or chlamydospore in soil\(^{25}\). These are known to be seed-borne causing wilt in various hosts including Cumin as reported from India\(^{20-28}\). Earlier investigators reported *Fusarium oxysporum* f. sp. *Cumin* is causative agent of vascular wilt of Cumin, *Fusarium equiseti* is most dominant fungi to causing wilt in Cumin in Israel\(^{29}\). Recently rediscovered and first reported same species was responsible for wilt in Cumin in India\(^{30}\) (Table 2).

Table 2 Vascular Wilt disease of Cumin reported in literature

<table>
<thead>
<tr>
<th>Seed-borne pathogen</th>
<th>Disease</th>
<th>Geographical Distribution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusarium oxysporum</td>
<td>Wilt</td>
<td>India</td>
<td>Mathur and Prasad, 1964; Gour and Agrawal, 1988</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Wilt</td>
<td>India</td>
<td>Deepak et al., 2008</td>
</tr>
<tr>
<td>Fusarium equiseti</td>
<td>Wilt</td>
<td>Israel</td>
<td>R. Reuveni, 1982</td>
</tr>
<tr>
<td>Fusarium equiseti</td>
<td>Wilt</td>
<td>India</td>
<td>Suthar and Bhatt, 2012</td>
</tr>
</tbody>
</table>

CONCLUSION

Screening of Cumin varieties cultivated in Gujarat led to selection of *Fusarium equiseti* wilt tolerant cultivars through Bioassay by carrying seed germination test, shoot/root length and vigour index assessments. FT-IR and MS analysis of *Fusarium equiseti* RC-17 culture filtrate fragment concentrate indicates an undescribed novel Toxin. The structure of secondary metabolite and molecular mass were determined using MS analysis. The molecular mass 449.4 were comparable to trichothecenes family with the broad range of 424.5 to 466.5. So the secondary metabolite may be trichothecenes family with the empirical formula of C\(_{24}H_{15}O_6\) (T-2) and C\(_{22}H_{15}O_4\) (HT-2).

This is the first study carried out on the secondary metabolites profiles such as production of a trichothecenes derivative by *Fusarium equiseti* isolated from vascular wilt of Cumin in Gujarat, India.

REFERENCES

30. Suthar, R. S. and Bhatt, P. N., First report of Fusarium equiseti causing vascular wilt of cumin in India. Plant Disease, 2012; 96 (12) 1821.

Cite this article as:
http://dx.doi.org/10.7897/2321-6328.06175

Source of support: Nil; Conflict of interest: None Declared

Disclaimer: JBSO is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the contents published in our Journal. JBSO cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of JBSO editor or editorial board members.