Review Article

ANTIOXIDANT ACTIVITY OF MADHURAPRABHAVA DRUGS DELINEATED IN MADHURASKANDHA OF CHARAKA’S MATERIA MEDICA

Bhuvad Sushama1*, Nishteswar K2
1PhD scholar, Department of Dravyaguna, I. P. G. T and R.A, GAU, Jamnagar, Gujarat, India
2HOD, Department of Dravyaguna, I. P. G. T and R.A, GAU, Jamnagar, Gujarat, India
*Corresponding Author Email: bvsushama87@gmail.com

Article Received on: 02/09/14 Accepted on: 10/12/14

DOl: 10.7897/2321-6328.02680

ABSTRACT
Acharya Charaka had mentioned Madhuraskandha in the context of Asthapana Basti dravya. There are total 85 drugs mentioned in the Madhuraskandha. The drugs included in Madhuraskandha usually possess Madhurara or Madhuravipaka and Madhuraprabhava. Madhuraprabhava is the phenomenon in which the drug shows the action attributed to Madhurara or Madhuravipaka though it does not contain either of them. In Madhuraskandha, there are in total 25 drugs which exercise their action through Madhuraprabhava. In Ayurvedic pharmacology, Prabhava is referred as inexplicable principle. But, basing upon the active constituents of the medicinal plants their respective activities can be explained. The active constituents of plants have been recently isolated. They have been divided into 16 main groups viz. alkaloids, anthocyanin, anthraquinones, glycosides, minerals etc. The active constituents in plants are the chemicals that have a medicinal effect on the body. The substances are compiled from the literature. The Botanical identification of the drugs was done by using ‘Glossary of Vegetable Drug in Bruhattrayi (Ayurveda)’ authored by Thakur Balawant Singh and Indian medicinal plant by C. P. Khare. The attributes of drugs (Rasa, Guna, Veerya, Vipaka) are compiled from Bhavaprakashanighantu, Kaiyadevanighantu and Rajanighantu. The research activities reported of these drugs has been collected from ‘Selection of Prime Ayurvedic Plant Drugs’ by Sukh Dev as well as relevant articles have been downloaded from Google.

INTRODUCTION
Acharya Charaka had described Shadarasaskandha (Group of drugs having six different tastes) in the context of Asthapanasha (Corrective enema) drugs. The main purpose of these skandhas was to describe the text neither to be elaborate nor too brief but at the same time should clearly explain the entire scientific truth. Substances are mostly composed of many tastes. Therefore drugs that are of Madhurara or Vipaka or those which produce the effects similar to Madhurara (Prabhava) are included under Madhuraskandha (group of the drugs having Sweet taste or potential). According to Ayurvedic pharmacology, Prabhava is inexplicable attribute (Achintya shakti). In pharmaceutical science, isolated active constituents are divided into 16 main groups i.e. Alkaloids, Anthocyanins, Anthraquinones, Bitter, Cardiac glycosides, Coumarins, Cyanogenic glycosides, Flavonoids, Glucosilinates, Minerals, Mucilage, Phenols, Saponins, Tannins, Vitamins and Volatile oils, which exert effect on the body. Therefore, it may be possible to explain specific activities ascribed to Prabhava by the presence of certain phytochemical constituents. The drugs of Madhuraskandha are listed and identified with the help of Chakrapani commentary (Ayurveda-dipika). The Botanical identification of the drugs was done by using ‘Glossary of Vegetable drug in Bruhattrayi’ authored by Thakur Balawant Singh and Indian medicinal plant by C. P. Khare. The attributes of drugs (Rasa, Guna, Veerya, Vipaka) are compiled from Bhavaprakashanighantu, Kaiyadevanighantu and Rajanighantu. The research activities reported of these drugs has been collected from ‘Selection of Prime Ayurvedic Plant Drugs’ by Sukh Dev as well as relevant articles have been downloaded from Google.
DISCUSSION
The drugs of Madhuraskandha having Madhuraprabhava are listed below:

Table 1: Attributes of drugs of Madhuraskandha having Madhuraprabhava

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Asanaparni/ Shanaparni (Aparajita)</td>
<td>Clitoria ternatea Linn</td>
<td>Kashaya, Tikta, Katu</td>
<td>Katu</td>
<td>Medhya, Kanthya, Smiti-budhida</td>
</tr>
<tr>
<td>2.</td>
<td>Ashwagandha</td>
<td>Withania somnifera Dunl</td>
<td>Tikta, Kashaya</td>
<td>Katu</td>
<td>Atishukrala, Balya, Rasayana</td>
</tr>
<tr>
<td>3.</td>
<td>Bhrati</td>
<td>Solanum indicum Linn</td>
<td>Katu, Tikta</td>
<td>Katu</td>
<td>Hridya</td>
</tr>
<tr>
<td>4.</td>
<td>Dvarada</td>
<td>Tectona grandis Linn.</td>
<td>Kashaya</td>
<td>Katu</td>
<td>Hridya</td>
</tr>
<tr>
<td>5.</td>
<td>Hansapadi</td>
<td>Adiantum lunulatum Burn</td>
<td>Katu</td>
<td>Katu</td>
<td>Rasayana</td>
</tr>
<tr>
<td>6.</td>
<td>Kakanasika</td>
<td>Pentatropis microphylla W and A</td>
<td>Kashaya, Katu, Tikta</td>
<td>Katu</td>
<td>Vamaka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichosanthes cucumerina Linn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clitoria ternatea Linn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Martyntia annua Linn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Kandalari</td>
<td>Solanum xanthocarpum Schrad</td>
<td>Tikta, Katu</td>
<td>Katu</td>
<td>Deepana, Pachana</td>
</tr>
<tr>
<td>8.</td>
<td>Kapotavali</td>
<td>Elettaria cardamomum Maton</td>
<td>Katu</td>
<td>Katu</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>Karkatashrini</td>
<td>Pistacia integerrima Stew. ex. Brandis</td>
<td>Tikta, Kashaya</td>
<td>Katu</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>Kataka</td>
<td>Strychnos potatorum Linn.f</td>
<td>Madhura, Kashaya</td>
<td>Katu</td>
<td>Chakshushya</td>
</tr>
<tr>
<td>11.</td>
<td>Kshudrasaha</td>
<td>Aloe vera Tourn. ex. Linn. (Kumari-Ck)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terammus labialis Spreng (Mashaparni)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barleria cristata (Shweta Sahachara) [Ys, Gr]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Mahasaha</td>
<td>Pheseolus trifolius Ait</td>
<td>Madhura</td>
<td>Katu</td>
<td>Grahi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Mudgaparni)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barleria cristata Linn. (Rakta Sahachara) [Ys, Gr]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Mahasravani</td>
<td>Sphaeranthus africanaus Linn</td>
<td>Madhura</td>
<td>Katu</td>
<td>Medhya</td>
</tr>
<tr>
<td>14.</td>
<td>Mashaparni</td>
<td>Terammus labialis Spreng</td>
<td>Tikta, Madhura</td>
<td>Katu</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Mudgaparni</td>
<td>Pheseolus trifolius Ait</td>
<td>Tikta, Madhura</td>
<td>Katu</td>
<td>Chakshushya, Grahi, Shukrala</td>
</tr>
<tr>
<td>16.</td>
<td>Odnapaki</td>
<td>Barleria striigos Willid.</td>
<td>Tikta, Madhura, Kashaya</td>
<td>Katu</td>
<td>-</td>
</tr>
<tr>
<td>17.</td>
<td>Punarnava</td>
<td>Boerhavia diffusa Linn</td>
<td>Katu</td>
<td>Katu</td>
<td>Grahi</td>
</tr>
<tr>
<td>18.</td>
<td>Rajakshavka</td>
<td>Euphorbia hirta Linn</td>
<td>Madhura, Tikta</td>
<td>Katu</td>
<td>Hridya, Shukrala</td>
</tr>
<tr>
<td>19.</td>
<td>Sambharsha</td>
<td>Loranthus longiflorus Desr</td>
<td>Tikta, Kashaya, Madhura</td>
<td>Katu</td>
<td>Vrishya, Rasayana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Dendrophthoe falcata (Linn.f) Etting)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Shatapusha</td>
<td>Peucedanum graveolens Linn</td>
<td>Katu</td>
<td>Katu</td>
<td>Deepana</td>
</tr>
<tr>
<td>21.</td>
<td>Shrawani</td>
<td>Sphaeranthus indicus Linn</td>
<td>Madhura</td>
<td>Katu</td>
<td>Medhya</td>
</tr>
<tr>
<td>22.</td>
<td>Tamalaki</td>
<td>Phyllanthus niruri Linn.</td>
<td>Tikta, Kashaya, Madhura</td>
<td>Katu</td>
<td>-</td>
</tr>
<tr>
<td>23.</td>
<td>Urubuka</td>
<td>Ricinus communis Linn</td>
<td>Madhura</td>
<td>Katu/ Oli-Madhura</td>
<td>-</td>
</tr>
<tr>
<td>24.</td>
<td>Vira</td>
<td>Lasia spinosa Thwaites</td>
<td>Tikta</td>
<td>Katu</td>
<td>-</td>
</tr>
<tr>
<td>25.</td>
<td>Vrischira</td>
<td>Trianthema portulacastrum Linn</td>
<td>Katu, Kashaya</td>
<td>Katu</td>
<td>Chakshushya, Balya, Varnya, Shukrala, Keshya, Svarya</td>
</tr>
</tbody>
</table>

Certain ferns are used by tribal for rejuvenating effect and among the list of Madhuraskandha drugs Hansapadi (Adiantum lunulatum Burn) is included which has exhibited antioxidant and immunomodulatory activity. Mahasaha has been interpreted as Mudgaparni and as Rakta kurubaka by Chakra and Yogindranath Sen, and more appropriate to accept Rakta kurubaka (Barleria cristata) for Mahasaha. Among the above drugs, Kakanasika is controversial. Veera is known as ‘Jalandhar shaka’ according to Chakra and Thakur Balawant Singh commented as it is hydrophytic plant with spices like Lasia spinosa Thwaites. It is a thick rhizome used as medicine and its thick spinous leaves used by tribal people in vegetables as ‘Bamalashaka’. It is also proven for their anti-oxidant activity and immunomodulatory activity. Therefore, it can be taken as source of Veera. There are total 25 drugs having Rasa other than Madhura, but included in Madhuraskandha. These drugs possess Katu, Tikta, Kashaya rasa and Katu Vipaka, but exhibit actions similar to that of Madhuravipaka like Shukrala, Rasayana, Chakshushya, Medhya, Vrishya etc. According to Ayurvedic pharmacology, these drugs exercise their activity by Prabhava (Achintya shakti) which is inexplicable.
modern pharmacology, the anti-oxidant agent decreases the cell destruction activity of free radical and promotes cell longevity which falls under the spectrum of Rasayana activity. Therefore, to evaluate Rasayana activity on the scientific parameter, anti-oxidant activity is preferred. Phytochemicals are structurally diverse, based on their biosynthetic origins; they can be classified into basically four classes whose members may exert positive effects on human health; the terpenoids, phenolic and poly-phenolic and nitrogen-containing alkaloids and sulphur-containing compounds, alkaloids, saponins, anthraquinone, cardiac glycosides, coumarine, phlobatannins, flavonoids, tannins are the major phytoconstituents for producing anti-oxidant activity. Drugs of Madhuraskandha having Madhuraprabhava are listed below with their reported anti-oxidant activity.

Aparajita (Clitoria ternatea Linn)
Ethanol extract of Clitoria ternatea shows presence of terpenoid, flavonoid, tannin and steroid which act as anti-oxidant principle. Recent study showed that malonylated flavonoid, glycosides were isolated from the petals of Clitoria ternatea with different petal colors using LC/MS/MS. It was also reported that five new anthocyanin, tannetins A9, B9, Bα, B2 and D2 were isolated from Clitoria ternatea flowers.

Ashwagandha (Withania somnifera Dunal)
Chemical analysis of Ashwagandha shows its main constituents as alkaloids and steroidal lactones. Among the various alkaloids, Withanine is the main constituent. Certain withanolide constituents have been demonstrated to possess significant anti-oxidant and immunomodulatory activity, some of the simple withanolides have immunosuppressive activity and some glycowithanolides displayed immune-stimulation.

Brihati (Solanum indicum Linn)
Red berries showed a higher content of carotenoids compared to green and yellow ones. Regarding polyphenols, several phenolic acids and flavonoids were found in all berries. The content of caffeoylquinic acids, caffeic acid, flavonol glycosides and naringenin was higher in red berries, while the content of p-coumaric acid and feruloylquinic acids was similar among the three colors. The results show the important role of the ripening stage in increasing the antioxidant content of Solanum indicum berries.

Kantakari (Solanum xanthocarpum Schrad and Wendle)
The amount of total phenolic and total flavonoid content of methanolic, ethanolic and aqueous extracts of Solanum xanthocarpum berries was evaluated. Ethanolic extract revealed the highest total phenolic content and total flavonoids contents at 9.02 mg GAE/L and 36.16 mg QE/L respectively. The literature survey showed that total phenolic and total flavonoid content may contribute directly to antioxidant action.

Dvarda (Tectona grandis Linn. f)
The treatment of alloxan induced diabetic rats with the methanolic extract of bark of Tectona grandis (TGM) and significantly (p < 0.05) decreased the LDH and glucose - 6 - phosphatase levels on diabetic group. Experimental results also reflect that the Tectona grandis is capable of reducing the oxidative stress associated with diabetes. The reduction of thiobarbituric acid levels in tissues in the TGM treated diabetic group ensures the antioxidant potential of the Tectona grandis. A new compound (Abeograndinicoic acid) and 21 known terpenoids were isolated from the bark of Tectona grandis. The enriched secondary metabolites may be responsible for the anti-diabetic and anti-oxidant activity of Tectona grandis.

Hansapadi (Adiantum lunulatum Burn)
A new triterpenoid, 22, 29xi-epoxy-30-norhopane-13beta-ol (1) was isolated together with six known compounds viz., fern-9(11)-en-6alpha-ol, Fern-9(11)-ene, fern-9(11)-en-25-oic acid, fern-9(11)-en-28-ol, filicenol-B, adiantone and oxidation product of fern-9(11)-en-6alpha-ol obtained as 6-oxofern-9(11)-ene from the whole plant of Adiantum lunulatum; these triterpenoids can perform anti-oxidant activity.

Kakanasika (Pentatropsis microphylla W and A)
P. microphylla was analyzed by various in vitro assays like total antioxidant, free radical scavenging, reducing power and metal ion chelating activities. Ascorbic acid and BHT were used as standards. The total antioxidant activity was higher in the methanolic leaf extract (1632.6 ± 143.6). The DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging activity was well established (IC50 at 129 μg/ml). Reducing power activity was higher (0.441 ± 0.13) in the higher concentration of the extract, 700 μg/ml. Similarly, the metal ion chelating activity was also higher (51.74 ± 1.63) in the higher concentration of the extract, 300 μg/ml with the IC50 value, 245 μg/ml.

Kapotavalli (Elettaria cardamomum Maton)
The methanolic extract of the fruit of the Elettaria cardamomum was evaluated for their free radical scavenging property keeping ascorbic acid as standard drug. Free radical scavenging activity was evaluated by DPPH method. It showed weak free radical scavenging activity with the DPPH method. But its IC50 [half maximal inhibitory concentration] value is higher.

Karkatashrngi (Pistacia integerrima Stew. ex. Brandis)
Pistacia integerrima (Anacardiaceae) showed presence of phenolics, flavonoids, carbohydrates and volatile oils in preliminary phytochemical screening. The Co-TLC of methanol extract and ethyl acetate fraction of methanol extract confirmed presence of Gallic acid, and Quercetin which are known to possess antioxidant activity.

Kataka (Strychnos potatorum Linn)
In the preliminary pharmacognostical and phytochemical evaluation of seed powder of Strychnos potatorum (SPP) and extract of Strychnos potatorum (SPE) in previous study revealed the presence of phenolic, steroids, triterpenes/volatile oils, saponins, alkaloids and volatile oils. HPTLC fingerprinting of specified fractions like alkaloids, steroids/triterpenes and polysaccharide fractions were also reported earlier. The highest antioxidant activity of SPE may be due to the presence of...
antioxidant phytochemicals like polyphenols, sterols and triterpenes. Kshudrasaha (Aloe vera Tourn. ex Linn) The polysaccharide and flavonoid concentrations of two-, three-, and four-year-old Aloe vera were determined, and their antioxidant activity was evaluated. The results showed that three-year-old Aloe vera contained significantly higher levels of polysaccharides and flavonoids than two- and four-year-old Aloe vera, and no significant differences in flavonoid levels were found between three- and four-year-old Aloe vera. All the aloe extracts showed significant antioxidant activity.

Mahasaha (Barleria cristata Linn.) Phytochemical screening yielded alkaloids, flavonoids, glycosides, saponins, phenols and tannins in the ethanol and aqueous extracts of Barleria cristata. Study yielded a new flavonoid compound, 6-O-α-L-rhamnopyranoside-3, 7, 3’-O-trimethylated-8- hydroxyquercetin, together with known flavonoids 6-O-α-L-rhamnopyranoside 3-methoxy quercetin, quercetagetin, tamarixetin, gossypetin and quercetin. The 50 % ethanol extract of leaves showed significant antioxidant activity probably from the occurrence of secondary metabolites.

Mashaparni (Teramnus labialis Spreng) Plant has been reported to contain dalbergioidin, kievetine, phaseollidin and flavonoid glycosides viz. Quercitin, kaempferol, vitexin, isovitexin have been reported. The fruit of this plant is found to contain proteins, minerals and vitamin C. Plant is extensively used by tribal people of Nandurbar district of Maharashtra, India in the treatment of jaundice and other liver disorders. The plant also contains friedelin, epifriedelin, stigmastanol and tannins. Total flavonoid content present in the root powder of the plant was found to be 92 mg/g. These phytochemical compounds are known to support bioactive activities in medicinal plants and thus responsible for the antioxidant activities of this plant extract used in this study.

Mudgaparni (Phaseolus trilobus Ait) The methanolic extractives of Phaseolus trilobus led to the isolation and characterization of vitexin, bergenin, daidzin and 3-O-methyl-D-chiro-inositol as active constituents. Vitexin exhibited a dose-dependent inhibitory activity on 5-lipoxygenase enzyme. The isolated constituents were also screened for their antioxidant activity by nitro blue tetrazolium (NBT) riboflavin photo reduction method. Vitexin exhibited moderate antioxidant activity.

Odanapaki (Barleria strigosa Willd.) Allied species like Barleria cristata is evaluated for their antioxidant activity.

Punarnava (Boerhavia diffusa Linn) Phytochemical constituents like flavonoids, alkaloids, glycosides and sterols have been reported to be present in the alcoholic root extracts of Boerhavia diffusa. The anti-stress activity of Boerhaavia diffusa is mainly attributed to these constituents with established antioxidant activity.

Vrischira (Trianthemia portulacastrum Linn) The methanolic extract was screened for the presence of various phytoconstituents like steroids, alkaloids, terpenoids, glycosides, flavonoids and carbohydrates. Plants produce a variety of antioxidants against molecular damage from reactive oxygen species produced by arterial wall macrophages and phenolic compounds are the major class of plant derived antioxidants. Among the various phenolic compounds, the flavonoids are perhaps the most important group. In the present study, the in vitro antioxidant or free radical scavenging activity of methanolic extract of the plant might be due to the presence of phenolic compounds in the methanolic extract.

Rajakshavaka (Euphorbia hirta Linn) Alcohol, acetone, ethyl acetate, hexane, petroleum ether, chloroform and aqueous extracts of Euphorbia hirta are screened through thin layer chromatography. From this analysis four compounds such as steroid, flavonoid, alkaloid and phenols were found in the leaves. The leaves of Euphorbia hirta have a high flavonoid and phenolic compounds than the steroid and alkaloid compounds. In vitro antioxidant activity of leaf of Euphorbia hirta which was achieved by using two different extracts such as alcohol and acetone. Total antioxidant activity of Euphorbia hirta is higher in acetone extract compared to alcoholic extract.

Samharsha (Dendrophthoe falcata (Linn.f) Plant contains a variety of antioxidants against molecular damage from reactive oxygen species produced by arterial wall macrophages and phenolic compounds are the major class of plant derived antioxidants. Among the various phenolic compounds, the flavonoids are perhaps the most important group. In the present study, the in vitro antioxidant or free radical scavenging activity of methanolic extract of the plant might be due to the presence of phenolic compounds in the methanolic extract.

Shatapushpa (Foeniculum vulgare Mill) Foeniculum vulgare ripe fruit revealed the presence of sterols and triterpenes, flavonoids, coumarins and volatile oils. Phenolic compounds containing free hydrogen are largely responsible for antioxidant activity as well as the phenolic compounds of F. vulgare can be referred to be responsible for the antioxidant activity.

Shravani (Sphaeranthus indicus Linn) The total antioxidant capacity of ethanolic extract of root of Sphaeranthus indicus was calculated based on the formation of phosphomolybdenum complex which was measured spectrophotometrically at 695 nm. It was reported that flavonoids are products which have been shown to possess various biological properties related to antioxidant mechanisms. Thus, in the present study, the...
antioxidant potential of *S. indicus* may be attributed to the presence of flavonoids.

Mahashravani (S. africanus Linn)
The methanolic extract of leaves of *Sphaeranthus africanus* shows the presence of total phenolic contents and showed dose-dependent DPPH radical scavenging activity.

Tamalaki (Phyllanthus niruri Linn., P. urinaria Linn)
These result suggested that over 95 % of the antioxidant capacity in *Phyllanthus* was due to the contribution of phenolic compounds. The other 5 % may be due to other non-phenolic compounds that exhibit antioxidant properties. Overall it can be observed that both the total phenolic content and antioxidant activity was consistently higher in the methanol extract when compared with the water extract, may be due to difference in polarity of solvents.

Urubooka (Ricinus communis Linn)
The methanolic extract of *Ricinus communis* leaves is found to contain flavonoids and tannins. A large number of flavonoids including these are known to possess strong antioxidant properties. Hence the antioxidant activity of *Ricinus communis* leaves is probably due the presence of flavonoids and tannins in the 50 % methanolic extract. The DPPH (1, 1-diphenyl-2- picryl hydrazly)-mediated in vitro study reveals that gallic acid, quercetin, gentisic acid, rutin, epicatechin and ellagic acid are the major phenolic compounds responsible for the antioxidant activity of the dry leaves of *Ricinus communis* Linn.

Vira (Lasia spinosa Thwaites)
The powdered leaves of *Lasia spinosa* were subjected to preliminary phyto-chemical screening for qualitative detection of phytoconstituents. The result represents the presence of the alkaloids, carbohydrates, saponins, glycosides, tannins, flavonoids etc. in the leaves of *L. spinosa*. The ethyl acetate extract contain only the flavonoids. Ethyl acetate soluble portionate of the methanolic extract of the plant material showed significant antioxidant property using DPPH assay with IC50 value of 16.42 µg/ml.

DISCUSSION
According to the principles of Ayurvedic pharmacology, Madhurarsa containing drugs generally exhibit Rasayana activity (Rejuvenating effect). There is an exception to this rule which envisaged that drugs which are not possessing Madhurarsa and Madhuravipaka (Biotransformation of the drug which yields the Madhurarsa activity) also contribute for Rasayana activity. As the modus operandi of such drugs cannot be explained in rational way, Acharya of Ayurveda evolved the concept of Prabhava (an inexplicable attribute of the drug) which acts as a causative factor of certain specific action and beyond the comprehensive of the science. Some categorize it as empirical principle of drug action with the advent of phytochemistry. Several active drug molecules are isolated and their activity is being assessed objectively making the empirical principle (Prabhava) to explain in explicit manner. The Rasayana activity (antioxidant activity one of the indices of Rasayana Karma) is well explained in the light of presence of phenol compounds, triterpenoids, flavonoids, gallic acids etc. Drug which are not possessing either Madhurarsa or Madhuravipaka and exhibiting Rasayana activity (cell protector activity) can be explained by certain compounds present in them. Seers of Ayurveda referred the incomprehensible principle as Prabhava. But researches have made it comprehensive.

CONCLUSION
The nomenclature of Vipaka is coined based on Rasa and similarly the principle of Prabhava is referred by Rasa into six categories namely Madhuraprabhava, Amlaprabhava, Lavanaprabhava, Tiktaprabhava, Katuprabhava and Kashayaprabhava. Recent researches have scientifically validated Rasayana Karma which contributes for healthy longevity of cell in terms of antioxidant activity. But the drugs having Madhuraprabhava do possess Rasayana activity as all these drugs show antioxidant activity due to the presence of flavonoids, terpenoids, saponins, coumarins, alkaloids, phenols, tannins etc.

REFERENCES

Cite this article as:

Source of support: Nil; Conflict of interest: None Declared